Reference: Singh A, et al. (2020) Direct involvement of Hsp70 ATP hydrolysis in Ubr1-dependent quality control. Mol Biol Cell 31(24):2669-2686

Reference Help

Abstract


Chaperones can mediate both protein folding and degradation. This process is referred to as protein triage, which demands study to reveal mechanisms of quality control for both basic scientific and translational purposes. In yeast, many misfolded proteins undergo chaperone-dependent ubiquitination by the action of the E3 ligases Ubr1 and San1, allowing detailed study of protein triage. In cells, both HSP70 and HSP90 mediated substrate ubiquitination, and the canonical ATP cycle was required for HSP70's role: we have found that ATP hydrolysis by HSP70, the nucleotide exchange activity of Sse1, and the action of J-proteins are all needed for Ubr1-mediated quality control. To discern whether chaperones were directly involved in Ubr1-mediated ubiquitination, we developed a bead-based assay with covalently immobilized but releasable misfolded protein to obviate possible chaperone effects on substrate physical state or transport. In this in vitro assay, only HSP70 was required, along with its ATPase cycle and relevant cochaperones, for Ubr1-mediated ubiquitination. The requirement for the HSP70 ATP cycle in ubiquitination suggests a possible model of triage in which efficiently folded proteins are spared, while slow-folding or nonfolding proteins are iteratively tagged with ubiquitin for subsequent degradation.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Singh A, Vashistha N, Heck J, Tang X, Wipf P, Brodsky JL, Hampton RY
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference