Reference: Huang CJ, et al. (2018) Experimental Evolution of Yeast for High-Temperature Tolerance. Mol Biol Evol 35(8):1823-1839

Reference Help

Abstract


Thermotolerance is a polygenic trait that contributes to cell survival and growth under unusually high temperatures. Although some genes associated with high-temperature growth (Htg+) have been identified, how cells accumulate mutations to achieve prolonged thermotolerance is still mysterious. Here, we conducted experimental evolution of a Saccharomyces cerevisiae laboratory strain with stepwise temperature increases for it to grow at 42 °C. Whole genome resequencing of 14 evolved strains and the parental strain revealed a total of 153 mutations in the evolved strains, including single nucleotide variants, small INDELs, and segmental duplication/deletion events. Some mutations persisted from an intermediate temperature to 42 °C, so they might be Htg+ mutations. Functional categorization of mutations revealed enrichment of exonic mutations in the SWI/SNF complex and F-type ATPase, pointing to their involvement in high-temperature tolerance. In addition, multiple mutations were found in a general stress-associated signal transduction network consisting of Hog1 mediated pathway, RAS-cAMP pathway, and Rho1-Pkc1 mediated cell wall integrity pathway, implying that cells can achieve Htg+ partly through modifying existing stress regulatory mechanisms. Using pooled segregant analysis of five Htg+ phenotype-orientated pools, we inferred causative mutations for growth at 42 °C and identified those mutations with stronger impacts on the phenotype. Finally, we experimentally validated a number of the candidate Htg+ mutations. This study increased our understanding of the genetic basis of yeast tolerance to high temperature.

Reference Type
Journal Article
Authors
Huang CJ, Lu MY, Chang YW, Li WH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference