Reference: Laurino JP, et al. (1999) The beta subunit of eukaryotic translation initiation factor 2 binds mRNA through the lysine repeats and a region comprising the C2-C2 motif. Mol Cell Biol 19(1):173-81

Reference Help

Abstract


Eukaryotic translation initiation factor 2 (eIF2) has been implicated in the selection of the AUG codon as the start site for eukaryotic translation initiation, since mutations in its three subunits in yeast that allow the recognition of a UUG codon by the anticodon of the initiator Met-tRNAMet have been identified. All such mutations in the beta subunit of eIF2 (eIF2beta) mapped to a region containing a putative zinc finger structure of the C2-C2 type, indicating that these sequences could be involved in RNA recognition. Another feature of eIF2beta that could mediate an interaction with RNA is located in the amino-terminal sequences and is composed of three repeats of seven lysine residues which are highly conserved in other species. We show here the ability of eIF2beta, purified from Escherichia coli as a fusion to glutathione S-transferase, to bind mRNA in vitro. Through a deletion analysis, mRNA binding was found to be dependent on the lysine repeats and a region encompassing the C2-C2 motif. Strong mRNA binding in vitro could be maintained by the presence of only one lysine or one arginine run but not one alanine run. We further show that only one run of lysine residues is sufficient for the in vivo function of eIF2beta, probably through charge interaction, since its replacement by arginines did not impair cell viability, whereas substitution for alanines resulted in inviable cells. mRNA binding, but not GTP-dependent initiator Met-tRNAMet binding, by the eIF2 complex was determined to be dependent on the presence of the lysine runs of the beta subunit.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Laurino JP, Thompson GM, Pacheco E, Castilho BA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference