Reference: Shimokata K, et al. (1998) Role of alpha-subunit of mitochondrial processing peptidase in substrate recognition. J Biol Chem 273(39):25158-63

Reference Help

Abstract


Mitochondrial processing peptidase is a heterodimer consisting of alpha-mitochondrial processing peptidase (alpha-MPP) and beta-MPP. We investigated the role of alpha-MPP in substrate recognition using a recombinant yeast MPP. Disruption of amino acid residues between 10 and 129 of the alpha-MPP did not essentially impair binding activity with beta-MPP and processing activity, whereas truncation of the C-terminal 41 amino acids led to a significant loss of binding and processing activity. Several acidic amino acids in the region conserved among the enzymes from various species were mutated to asparagine or glutamine, and effects on processing of the precursors were analyzed. Glu353 is required for processing of malate dehydrogenase, aspartate aminotransferase, and adrenodoxin precursors. Glu377 and Asp378 are needed only for the processing of aspartate aminotransferase and adrenodoxin precursors, both of which have a longer extension peptide than the others studied. However, processing of the yeast alpha-MPP precursor, which has a short extension peptide of nine amino acids, was not affected by these mutations. Thus, effects of substitution of acidic amino acids on the processing differed with the precursor protein and depended on length of the extension peptides. alpha-MPP may function as a substrate-recognizing subunit by interacting mainly with basic amino acids at a region distal to the cleavage site in precursors with a longer extension peptide.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Shimokata K, Kitada S, Ogishima T, Ito A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference