The Saccharomyces Genome Database (SGD) provides comprehensive integrated biological information for the budding yeast Saccharomyces cerevisiae along with search and analysis tools to explore these data, enabling the discovery of functional relationships between sequence and gene products in fungi and higher organisms.
University of British Columbia, Vancouver, BC
Cold Spring Harbor Laboratory, New York
Wellcome Genome Campus, Hinxton, Cambridge, UK
Yeast are keenly sensitive to internal pH. Several membrane proteins pump H+ ions out of the cell to keep the internal pH near neutral. When carbon becomes scarce, however, it is essential for survival that these pumps get inactivated so the internal space is rapidly acidified. This acidification is postulated to conserve energy and trigger […]
Read MoreThe nuclear pore complex (NPC) is a complicated assembly embedded in the nuclear envelope that has the ability not only to assemble and disassemble quickly, but to adapt to changing needs for transport of macromolecules. The critical function of this elaborate complex has led researchers to invest intensive study, which has recently yielded remarkable new […]
Read MoreMessenger RNA (mRNA) 3′ end processing is an evolutionarily conserved and highly controlled process which requires several components from translation/transcription machinery. This processing involves monitoring nascent mRNAs for specific sequences, endonucleolytic cleavage, adding poly(A) tails, and triggering transcription termination. In budding yeast, the 3′ end processing machinery involves the cleavage and polyadenylation factor (CPF) complex […]
Read MoreCandida glabrata and Saccharomyces cerevisiae are closely related yeasts of which the former is pathogenic to mammals and the latter is used to make bread, wine, and beer. At present, the ~400,000 annual cases of life-threatening Candida infection are at risk of increase due to multidrug-resistant strains. Fungal drug resistance relies on the fungal-specific pleiotropic […]
Read MoreThe INO80 chromatin remodeling complex has long been the subject of intense study. Despite this, a recent report by Hsieh et al. in Molecular Cell reveals a new and unexpected biological activity: the INO80 complex (as compared to the other classes of chromatin remodelers) has a unique ability to act not only on nucleosomes but […]
Read More