Reference: Li Y, et al. (2025) Oriented butyrate production through a novel bacteria-yeast microbiome: batch verification, key electron donor identification, and long-term validation. Bioresour Technol 443:133892

Reference Help

Abstract


Recovering butyrate from organic waste enables its high-value conversion, aligning with the principles of a circular economy. Traditional butyrate fermentation emphasizes carbohydrates and protein degradation, with limited focus on chain elongation (CE). This study, for the first time, systematically evaluated the effects of different Saccharomyces cerevisiae (SC) concentrations (1, 2, 4, 6, and 8 g/L) on ethanol production (a key electron donor) and subsequent CE for butyrate synthesis, identifying 2 g/L as the optimal SC dosage. At this concentration, butyrate production reached 15.41 ± 2.84 g COD/L, which was 2.72 times higher than that of the blank. Metabolic pathway analysis revealed that yeast not only enhanced substrate degradation (>90 %) but also facilitated the in situ generation and utilization of ethanol. 16S rRNA indicated 54.10 % relative abundance of butyrate-producing bacteria (Clostridium). Long-term tests found that adding SC reversed the halt in production from prolonged distiller yeast inoculum, stabilising output at 15 g COD/L. Metagenomic analysis revealed that SC inoculation primarily enriched Clostridium luticellarii and Clostridium tyrobutyricum. In addition to raising reverse β-oxidation gene abundance, this treatment also enhanced lactate utilization genes, thereby strengthening acetyl-CoA to butyrate conversion. Through further experiments involving different electron donor ratios and long-term operation, this study highlights the critical role of yeast-bacteria synergy in enhancing butyrate synthesis, providing a theoretical foundation and technical strategy for food waste valorization in line with circular economy principles.

Reference Type
Journal Article
Authors
Li Y, Chen Y, Du Z, Guo Y, Zhang W, Xu X, Liu Z, Duan H, Duan X, Zhang A, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference