Reference: Liu Z, et al. (2026) Enhancing delta-tocotrienol production in Saccharomyces cerevisiae via metabolic engineering strategies in conjunction with the mutagenesis of tocopherol cyclase. Synth Syst Biotechnol 12:172-182

Reference Help

Abstract


Delta (δ)-tocotrienol is a member of the vitamin E family and exhibits bioactivities such as antioxidant, anti-inflammatory, and neuroprotective activities. As a nutrient with protective effects on human health, δ-tocotrienol has broad application prospects in food, cosmetic, and pharmaceutical industries. The construction of efficient microbial cell factories capable of δ-tocotrienol production using synthetic biology approaches is an effective strategy for supplementing or even replacing the vitamin E supply chain in the future. The current study successfully enhanced the biosynthesis of δ-tocotrienol in Saccharomyces cerevisiae by combining metabolic engineering and enzyme engineering strategies. Specifically, the substrate channel constructed by the sequential fusion of the enzymes PaCrtE and SyHPT successfully increased the supply of the key precursor MGGBQ, resulting in a significant increase in the production of δ-tocotrienol. In situ extraction and optimization of the expression of transporter protein PDR1 increased the efflux of δ-tocotrienol, directing the metabolic flux toward the product δ-tocotrienol. To enhance the catalytic activity of the key rate-limiting enzyme tocopherol cyclase from Arabidopsis thaliana (AtTC), semirational protein design was conducted herein. The mutant AtTCT87S was found to increase the production of δ-tocotrienol by 2.3 times compared to that obtained with the wild-type enzyme. AtTCT87S can thus be universally used for synthetic biology strategies in future studies to enhance the microbial heterologous production of δ-tocotrienol. The strain T08 was finally obtained herein; the numerous metabolic engineering strategies discussed in this study were integrated into this strain, allowing the production of 4337.3 μg/L of δ-tocotrienol in a shake-flask fermentation, which is 8.9 times that of the yield obtained with the initial strain T03. Scaling up to a 5-L fermentation tank resulted in a δ-tocotrienol yield of 16.9 mg/L.

Reference Type
Journal Article
Authors
Liu Z, Tang M, Zhang W, Tian Y, Qiao J, Wen M, Li W, Caiyin Q
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference