Reference: Nwaora H, et al. (2025) In-Cell Proteomics Enables High-Resolution Temporal Profiling of Cell Cycle Progression and DNA Damage Response in Saccharomyces cerevisiae. Proteomics e70089

Reference Help

Abstract


Yeast is a widely used model organism in biological and proteomics research. Conventional bottom-up proteomic analysis of yeast cells requires disruption of the rigid cell wall to extract proteins, which is often associated with lengthy procedures, significant technical variations, and noticeable sample loss. Here, we present an "in-cell proteomics" approach that eliminates cell lysis and digests proteins directly in the yeast cells after a rapid methanol fixation. The approach integrates all the sample processing into a single filter device, offering a simple yet highly effective and sensitive approach for yeast proteomics analysis. We applied this approach to characterize proteome dynamics in the budding yeast Saccharomyces cerevisiae during cell cycle progression and following DNA damage. With single-shot LC-MS, we were able to detect and quantify around 3500 yeast proteins from the in-cell digests. Our study introduces a novel in-cell approach for yeast proteomics analysis and presents a quantitative proteome map of yeast cell-cycle progression with high temporal resolution for cell division cycle (Cdc) proteins. It also provides a comprehensive, time-resolved view of proteome-wide dynamics and remodeling throughout the yeast cell cycle in response to methyl methanesulfonate (MMS)-induced DNA damage. SUMMARY: Yeast proteomics studies often require detergent-based and/or mechanical disruption procedures for cell lysis and protein digestion. We reported an "in-cell proteomics" approach that eliminates cell lysis and digests proteins directly in the yeast cells after a simple methanol fixation. The approach integrates all the sample processing into a single filter device, offering a rapid yet highly effective and sensitive approach for yeast proteomics analysis. Using this method, we were able to characterize proteome dynamics in the budding yeast Saccharomyces cerevisiae during cell cycle progression and following DNA damage.

Reference Type
Journal Article
Authors
Nwaora H, Yu Y, Zhuang Z
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference