Reference: Langevin R, et al. (2025) Tuning the Response of GPCR-Based Yeast Sensors Using Fluorescent Reporters. ACS Synth Biol

Reference Help

Abstract


G protein-coupled receptors (GPCRs) recognize ligands on the cell surface, initiating intracellular signaling pathways that control a variety of biological processes, from neurotransmission and hormone regulation to light detection and smell. As entryways into these pathways, GPCRs are key pharmacological targets, with 30% of FDA-approved drugs targeting them. High-throughput GPCR-based sensors in yeast are proven platforms for the identification of novel GPCR ligands. Most human GPCRs (hGPCRs), however, led to small increases in the signal after activation, hindering the development of high-throughput (HT) assays. To streamline the generation of HT assays for biomedically important hGPCRs, here we analyze five fluorescent reporters in the context of hGPCR-based sensors. Using the serotonin receptor 4 (HTR4)-based sensor as a testbed, we identify YPet, a yellow fluorescent protein previously evolved for improved intracellular fluorescence, as the optimal fluorescent reporter when using flow cytometry, fluorescence-activated cell sorting, or a fluorescent plate reader. YPet increases the dynamic range of hGPCR-based sensors in general, enabling the engineering of HTR4-, MC4R- S1PR2-, HTR1A-, and Mel1A-based sensors with vastly higher increases in signal than previously engineered sensors. YPet even allowed the construction of a functional HTR1D-based sensor, a sensor that had been difficult for the field to construct. Finally, the fast maturation of YPet reduces the time to readout from 4 h to 30 min, unlocking point-of-care diagnostic applications previously inaccessible to hGPCR-based sensors in yeast. Looking ahead, the identification of YPet as the optimal fluorescent reporter for yeast hGPCR-based sensors opens the door to the standardized generation of hGPCR high-throughput assays in this host, and sets the stage for ultrahigh-throughput single-cell experiments toward the identification of new ligands for known GPCRs, GPCR deorphanization, and GPCR engineering to bind designer ligands.

Reference Type
Journal Article
Authors
Langevin R, Martin-Downey M, Patel A, Archer H, Davila Severiano SJ, Peralta-Yahya P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference