Reference: Pope RE and Prade RA (2025) Vesicle-driven endomembrane systems in fungi. Microbiol Mol Biol Rev e0029724

Reference Help

Abstract


SUMMARYIn fungi, the endomembrane system is a pleiomorphic, dynamic network of organelles, driven by vesicle trafficking pathways, which maintain cellular homeostasis, hyphal polar growth, and the secretion of proteins and metabolites. In syncytial hyphae, spatial specialization of organelles and other cellular components of the endomembrane system is evident to support growth and adaptation. Young, apical regions of hyphae contain a Golgi-Spitzenkörper-exocyst triad for rapid polar expansion, whereas distal, older hyphal regions employ unconventional secretion via multivesicular bodies (MVBs), septal vesicle fusion, and extracellular vesicles (EVs) to enhance nutrient acquisition for the entirety of the mycelium. Vesicular trafficking integrates distinct endomembrane compartments into specialized pathways that involve vesicle biogenesis, transport, and fusion to sustain polarized growth and secretion. Actin and microtubules provide tracks for vesicle motility, while Rab GTPases regulate vesicle localization and fusion events. The ESCRT machinery governs MVB formation and scission, COPI/II regulate bidirectional endoplasmic reticulum-Golgi transport, SNARE proteins allow for vesicle and target membrane fusion, and the exocyst complex tethers vesicles to exocytic regions of the plasma membrane. Together, these components form dynamic endomembrane assembly lines that coordinate many cellular processes. The "distance hypothesis" predicts that extracellular vesicle-mediated secretion predominates in subapical regions as tip growth slows. This mechanism extends the secretory capabilities of hyphae and promotes broader distribution of secreted enzymes along hyphae. Having a better understanding of spatially regulated secretion pathways will advance our understanding of fungal cell biology and provide strategies to optimize fungi for industrial protein production.

Reference Type
Journal Article | Review
Authors
Pope RE, Prade RA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference