Reference: Wu Q, et al. (2025) De novo biosynthesis of taxifolin in yeast peroxisomes. Microb Cell Fact 24(1):153

Reference Help

Abstract


Background: Yeast peroxisomes have been engineered as ideal synthetic compartments to enhance the heterologous biosynthesis of natural products, particularly terpenoids and fatty acid derivatives. This advantage is primarily attributed to the rich acetyl-CoA pool generated from the spatially specific fatty acid β-oxidation within peroxisomes. However, their potential for flavonoid biosynthesis has been largely underexplored, primarily due to limited knowledge regarding precursor transport, cofactor availability, and the redox environment in peroxisomes.

Results: In this study, we successfully compartmentalized the biosynthesis of taxifolin, a dihydroflavonol, in Saccharomyces cerevisiae peroxisomes. The result indicated that flavonoid biosynthesis in peroxisome offers a more efficient approach compared to its synthesis in the cytosol. This study managed to expand the application scope of peroxisome compartmentalization to flavonoid biosynthesis. By reinforcing the rate-limiting steps, optimizing cofactor supply and activation of fatty acids, we accomplished the de novo synthesis of taxifolin in peroxisomes for the first time, attaining a titer of 120.3 ± 2.4 mg/L in shake-flask fermentation using a minimal medium.

Conclusion: These findings highlight the feasibility of peroxisomal compartmentalization for flavonoid biosynthesis, providing new insights and a framework for the biosynthesis of other high-value flavonoids using yeast peroxisomes.

Reference Type
Journal Article
Authors
Wu Q, Chen R, Zhang L
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference