Reference: Emekeeva DD, et al. (2025) Accelerated Proteomic Sample Preparation for Accurate Ultrafast Mass Spectrometry-Based Quantitative Analysis of Cell and Tissue Proteomes. Biochemistry (Mosc) 90(5):607-621

Reference Help

Abstract


Advances in liquid chromatography/mass spectrometry (LC-MS) have enabled proteome-wide quantitation in minutes, achieving rate of 1000 analyses per day. This necessitates revisiting the rapid sample preparation approaches to match this data acquisition speed. Despite the fact that these approaches have been developed decades ago, their application in quantitative ultrafast proteomics and comprehensive comparison of their performance under different conditions have not been explored. In this study, the ultrasound, microwave irradiation, and elevated temperature-assisted approaches for accelerated protein reduction, alkylation, and trypsin digestion were compared. Validation was carried out with label-free quantitative LC-MS/MS and fragmentation-free DirectMS1 methods of shotgun proteome analyses of Saccharomyces cerevisiae, human cell lines, and winter wheat shoots. These data acquisition methods were applied in ultrafast implementations employing 5 to 16 min LC gradients. Human-yeast proteome mixtures were used as standards to evaluate quantitation accuracy of the sample preparation workflows. Our findings indicate that the reduced time of sample preparation insignificantly decreased efficiency of reduction, alkylation, and digestion, yet, preserved reproducible peptide and protein identification. We also found that the 30-min microwave-assisted and overnight trypsin digestion yielded comparable quantitation accuracy in ultrafast analyses using DirectMS1 method.

Reference Type
Journal Article
Authors
Emekeeva DD, Kusainova T, Garibova LA, Shelepchikov AA, Kononikhin AS, Tretyakov AV, Lavrukhina OI, Nikolaev EN, Gorshkov MV, Tarasova IA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference