Reference: Narayanan B, et al. (2025) Kinetic-model-guided engineering of multiple S. cerevisiae strains improves p-coumaric acid production. Metab Eng 91:430-441

Reference Help

Abstract


The use of kinetic models of metabolism in design-build-learn-test cycles is limited despite their potential to guide and accelerate the optimization of cell factories. This is primarily due to difficulties in constructing kinetic models capable of capturing the complexities of the fermentation conditions. Building on recent advances in kinetic-model-based strain design, we present the rational metabolic engineering of an S. cerevisiae strain designed to overproduce p-coumaric acid (p-CA), an aromatic amino acid with valuable nutritional and therapeutic applications. To this end, we built nine kinetic models of an already engineered p-CA-producing strain by integrating different types of omics data and imposing physiological constraints pertinent to the strain. These nine models contained 268 mass balances involved in 303 reactions across four compartments and could reproduce the dynamic characteristics of the strain in batch fermentation simulations. We used constraint-based metabolic control analysis to generate combinatorial designs of 3 enzyme manipulations that could increase p-CA yield on glucose while ensuring that the resulting engineering strains did not deviate far from the reference phenotype. Among 39 unique designs, 10 proved robust across the phenotypic uncertainty of the models and could reliably increase p-CA yield in nonlinear simulations. We implemented these top 10 designs in a batch fermentation setting using a promoter-swapping strategy for down-regulations and plasmids for up-regulations. Eight out of the ten designs produced higher p-CA titers than the reference strain, with 19-32 % increases at the end of fermentation. All eight designs also maintained at least 90 % of the reference strain's growth rate, indicating the critical role of the phenotypic constraint. The high experimental success of our in-silico predictions lays the foundation for accelerated design-build-test-learn cycles enabled by large-scale kinetic modeling.

Reference Type
Journal Article
Authors
Narayanan B, Jiang W, Wang S, Sáez-Sáez J, Weilandt D, Barcon MM, Hesselberg-Thomsen V, Borodina I, Hatzimanikatis V, Miskovic L
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference