Reference: Dulaney C, et al. (2025) A kinetic model of copper homeostasis in Saccharomyces cerevisiae. J Biol Chem 110368

Reference Help

Abstract


Rather than inhibiting copper entry when grown on high Cu, yeast cells import excessive Cu while simultaneously increasing expression of metallothionein CUP1 which then sequesters the excess Cu. An ordinary-differential-equations-based kinetic model was developed to investigate this unusual behavior. The assumed reaction network included 25 reactions and 10 components in the cytosol of yeast cells growing in media supplemented with increasing nutrient COPPER concentrations. Published concentrations of copper proteins and coordination complexes that constitutes the low-molecular-mass (or labile) Cu pool were assumed. Other components included transcription factors MAC1 and ACE1, the MAC1-dependent copper importer CTR1, and other copper proteins considered collectively. A second MAC1-independent importer was required for sufficient Cu to enter the cell under Cu-excess conditions. The mathematical system was initially solved at steady-state for each condition in the series. The null-space of the stoichiometric matrix was evaluated using the Basic Pathways approach. Steady-state rates and rate-constants were calculated for each reaction and each condition of the series. Four rate-constants trended higher across the series indicating that the cell regulates those reactions in ways that were not included in the assumed rate-law expressions. This behavior was simulated by augmenting those expressions with logistical functions that sensed labile Cu and/or nutrient COPPER. The resulting integrated dynamical system approximately generated observed component concentrations over the series and was stable to both intracellular and extracellular perturbations. The MAC1-independent importer is predicted to be FET4, a nonspecific importer of both Cu and Fe. Cells likely tolerate excessive Cu import to import sufficient iron.

Reference Type
Journal Article
Authors
Dulaney C, Walton JR, Lindahl PA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference