Reference: Harrison PM (2025) Robust phylogenetic profile clustering for Saccharomyces cerevisiae proteins. PeerJ 13:e19370

Reference Help

Abstract


Background: Genes are continually formed and lost as a genome evolves. However, new genes may tend to appear during specific evolutionary epochs rather than others, or disappear together in a more recent organismal clade. Methods to identify gene origination might simply use the last common ancestor to contain an ortholog as the putative gene origination point, or use a heuristic threshold that allows for a certain amount of missing orthologs in the cohort of species examined. Here, to avoid such issues, an alternative approach based on the clustering of phylogenetic profiles is applied, and the results are examined for any evidence of epochal trends in gene origination, and associated trends in specific sequence traits or functional associations.

Methods: A phylogenetic profile is simply an array indicating the presence or absence of a gene in a list of species. These profiles were compared and clustered to discern patterns in gene occurrences across >800 fungal species, centering the analysis on the budding yeast Saccharomyces cerevisiae.

Results: Clear epochs of gene origination were observed linked to the last common ancestors of Saccharomycetaceae and Saccharomycetes, and also to Fungi and earlier ancestors. These trends are independent of the proteome and genome-assembly quality of the underlying data. Clusters of phylogenetic profiles demonstrated some significant functional associations, such as to cellular spore formation and chromosome segregation in genes originating in Saccharomycetaceae. The phylogenetic profile clustering analysis enabled detection of parameter-independent trends in intrinsic disorder, prion-like composition and gene uniqueness as a function of epochal gene age. For example: new proteins with prion-like domains have arisen at a similar rate for most of fungal evolution centred on S. cerevisiae; the most proteins with mild intrinsic disorder have appeared during the early Saccharomycetaceae epoch rather than more recently, and very recently formed genes are the least likely to be single-copy (i.e., 'unique' yeast proteins).

Conclusions: For individual proteins, the profile cluster data generated here are useful for investigating experimental hypotheses, since they provide evidence for functional linkages that have yet to be discerned.

Reference Type
Journal Article
Authors
Harrison PM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference