Reference: Behringer KI, et al. (2024) Metabolization of Free and Peptide-Bound Oxidized Methionine Derivatives by Saccharomyces cerevisiae in a Model System. J Agric Food Chem 72(34):19040-19050

Reference Help

Abstract


In the brewing process, methionine is a decisive amino acid for (off-)flavor formation. A significant part of methionine is oxidized to methionine sulfoxide (MetSO) in malt. We hypothesized that MetSO and MetSO2 are metabolized to volatile compounds during yeast fermentation and examined whether the yeast Saccharomyces cerevisiae is able to catabolize l-MetSO and l-MetSO2 in free and dipeptide-bound forms. We also investigated the stability of l-methionine sulfoximine and S-methylmethionine. Cell viability in the presence of the test compounds was at least 90%. Both free and peptide-bound test substances were metabolized by Saccharomyces cerevisiae. l-MetSO was degraded most rapidly as the free amino acid, while l-MetSO2 was degraded most rapidly bound in dipeptides. We observed a different degradation behavior of the (R) and (S) diastereoisomers for l-MetSO and l-methionine sulfoximine. Furthermore, we detected methionol as the only metabolite of MetSO. Methionol sulfoxide was not formed. MetSO2 was not converted to methionol or methionol sulfone but to the respective α-hydroxy acid. We conclude that the reduction of MetSO to methionine proceeds faster than transamination. The occurrence of MetSO or MetSO2 in brewing malt will not lead to the formation of hitherto unknown volatile metabolites of the Ehrlich pathway.

Reference Type
Journal Article
Authors
Behringer KI, Fritz V, Hellwig M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference