Reference: Li K, et al. (2023) A mathematical model for nutrient-limited uniaxial growth of a compressible tissue. J Theor Biol 575:111631

Reference Help

Abstract


We consider the uniaxial growth of a tissue or colony of cells, where a nutrient (or some other chemical) required for cell proliferation is supplied at one end, and is consumed by the cells. An example would be the growth of a cylindrical yeast colony in the experiments described by Vulin et al. (2014). We develop a reaction-diffusion model of this scenario which couples nutrient concentration and cell density on a growing domain. A novel element of our model is that the tissue is assumed to be compressible. We define replicative regions, where cells have sufficient nutrient to proliferate, and quiescent regions, where the nutrient level is insufficient for this to occur. We also define pathlines, which allow us to track individual cell paths within the tissue. We begin our investigation of the model by considering an incompressible tissue where cell density is constant before exploring the solution space of the full compressible model. In a large part of the parameter space, the incompressible and compressible models give qualitatively similar results for both the nutrient concentration and cell pathlines, with the key distinction being the variation in density in the compressible case. In particular, the replicative region is located at the base of the tissue, where nutrient is supplied, and nutrient concentration decreases monotonically with distance from the nutrient source. However, for a highly-compressible tissue with small nutrient consumption rate, we observe a counter-intuitive scenario where the nutrient concentration is not necessarily monotonically decreasing, and there can be two replicative regions. For parameter values given in the paper by Vulin et al. (2014), the incompressible model slightly overestimates the colony length compared to experimental observations; this suggests the colony may be somewhat compressible. Both incompressible and compressible models predict that, for these parameter values, cell proliferation is ultimately confined to a small region close to the colony base.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Li K, Gallo AJ, Binder BJ, Green JEF
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference