Reference: Rudinskiy M and Molinari M (2023) ER-to-lysosome-associated degradation in a nutshell: mammalian, yeast, and plant ER-phagy as induced by misfolded proteins. FEBS Lett 597(15):1928-1945

Reference Help

Abstract


Conserved catabolic pathways operate to remove aberrant polypeptides from the endoplasmic reticulum (ER), the major biosynthetic organelle of eukaryotic cells. The best known are the ER-associated degradation (ERAD) pathways that control the retrotranslocation of terminally misfolded proteins across the ER membrane for clearance by the cytoplasmic ubiquitin/proteasome system. In this review, we catalog folding-defective mammalian, yeast, and plant proteins that fail to engage ERAD machineries. We describe that they rather segregate in ER subdomains that eventually vesiculate. These ER-derived vesicles are captured by double membrane autophagosomes, engulfed by endolysosomes/vacuoles, or fused with degradative organelles to clear cells from their toxic cargo. These client-specific, mechanistically diverse ER-phagy pathways are grouped under the umbrella term of ER-to-lysosome-associated degradation for description in this essay.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Rudinskiy M, Molinari M
Primary Lit For
Additional Lit For
Review For