Reference: Hiestand L, et al. (2023) Chemical Genetics Screen of EVP4593 Sensitivity in Budding Yeast Identifies Effects on Mitochondrial Structure and Function. MicroPubl Biol 2023

Reference Help

Abstract


Mitochondria are essential eukaryotic organelles. Mitochondrial dysfunction can lead to mitochondrial myopathies and may contribute to neurodegenerative diseases, cancer, and diabetes. EVP4593, a 6-aminoquinazoline derivative with therapeutic potential, has been shown to inhibit NADH-ubiquinone oxidoreductase (Complex I) of the mitochondrial electron transport chain, causing the release of reactive oxygen species (ROS) and a reduction in ATP synthesis. In isolated mitochondria, EVP4593 inhibits respiration in the nanomolar range (IC 50 = 14-25 nM). However, other EVP4593-specific effects on biological processes have also been described. Consistent with an effect on mitochondrial function in budding yeast, we find that EVP4593 [>25µM] induces a pronounced growth defect when wildtype cells are grown on a non-fermentable carbon source. This sensitivity to EVP4593 is exacerbated by deletion of PDR5 , an ABC transporter that confers multidrug resistance. To better understand the cellular pathways and processes affected by EVP4593, we conducted a genome-wide chemical genetics screen of the yeast knockout collection. The objective was to identify yeast gene deletion strains that exhibit growth defects when subjected to a sublethal concentration of EVP4593 [15µM]. Our screen identified 21 yeast genes that are required for resistance to 15µM EVP4593 in glycerol-containing media. The genes identified in our screen are functionally involved in several distinct categories including mitochondrial structure and function, translational regulation and nutritional sensing, cellular stress response and detoxification. Additionally, we identified cellular phenotypes associated with the exposure to EVP4593, including changes in mitochondrial structure. In conclusion, our study represents the first genome-wide screen in yeast to identify the genetic pathways and cell-protective mechanisms involved in EVP4593 resistance and reveals that this small molecule inhibitor affects both mitochondrial structure and function.

Reference Type
Journal Article
Authors
Hiestand L, Shen S, Sloan W, Nasiri H, Lashley D, Kerscher O
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference