Reference: Kirkin V and Rogov VV (2019) A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway. Mol Cell 76(2):268-285

Reference Help

Abstract


The clearance of surplus, broken, or dangerous components is key for maintaining cellular homeostasis. The failure to remove protein aggregates, damaged organelles, or intracellular pathogens leads to diseases, including neurodegeneration, cancer, and infectious diseases. Autophagy is the evolutionarily conserved pathway that sequesters cytoplasmic components in specialized vesicles, autophagosomes, which transport the cargo to the degradative compartments (vacuoles or lysosomes). Research during the past few decades has elucidated how autophagosomes engulf their substrates selectively. This type of autophagy involves a growing number of selective autophagy receptors (SARs) (e.g., Atg19 in yeasts, p62/SQSTM1 in mammals), which bind to the cargo and simultaneously engage components of the core autophagic machinery via direct interaction with the ubiquitin-like proteins (UBLs) of the Atg8/LC3/GABARAP family and adaptors, Atg11 (in yeasts) or FIP200 (in mammals). In this Review, we critically discuss the biology of the SARs with special emphasis on their interactions with UBLs.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Kirkin V, Rogov VV
Primary Lit For
Additional Lit For
Review For