Reference: Mołoń M, et al. (2023) Increasing the number of ribosomal uL6 mRNA copies accelerates aging of the budding yeast. Mol Biol Rep 50(3):2933-2941

Reference Help

Abstract


Background: Aging is a biological process from which there is no escape. Diverse factors contribute to aging, most notably cell energy metabolism. Ribosome biogenesis and translation are the two main energy-consuming processes that contribute to longevity. It has repeatedly been shown that translation disorders caused by deletion of ribosomal genes delay aging. However, the effect of increasing the amount of ribosomal proteins has remained elusive.

Methods and results: We determine the relative level of the uL6A and uL6B mRNA derived from the genome and the plasmid. The appearance of additional copies of plasmid-derived uL6 leads to an increase in uL6A and uL6B derived from the BY4741 genome (mainly form B). The relative amount of mRNA of plasmid form B is several times greater than the amount of mRNA in plasmid form A. The level of mRNA derived from the plasmid is increased many times compared to the mRNA of genomic origin. Additionally, the study indicates that excess of uL6A is a limiting or even harmful factor in the reaction to stressful conditions. Therefore, our hypothesis states that uL6A transcription or mRNA uL6A degradation in yeast cells are tightly regulated. our data clearly demonstrate that aging is accelerated when additional copies of uL6 paralogs appear.

Conclusion: Overexpression of both uL6A or uL6B accelerates aging in the budding yeast. The level of uL6A mRNA is tightly controlled by yeast cell. The uL6a protein plays a pivotal role in the response to environmental stress, including oxidative and osmotic stress, and thus may fall into the class of moonlighting ribosomal proteins with extra-ribosomal function.

Reference Type
Journal Article
Authors
Mołoń M, Zaciura M, Wojdyła D, Molestak E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference