Reference: Ma Y, et al. (2023) Engineering a universal and efficient platform for terpenoid synthesis in yeast. Proc Natl Acad Sci U S A 120(1):e2207680120

Reference Help

Abstract


Engineering microbes for the production of valuable natural products is often hindered by the regulation of native competing metabolic networks in host. This is particularly evident in the case of terpenoid synthesis in yeast, where the canonical terpenoid precursors are tightly coupled to the biosynthesis of sterols essential for yeast viability. One way to circumvent this limitation is by engineering product pathways less connected to the host native metabolism. Here, we introduce a two-step isopentenol utilization pathway (IUP) in Saccharomyces cerevisiae to augment the native mevalonate pathway by providing a shortcut to the synthesis of the common terpenoid precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). As such, the IUP was capable of elevating the IPP/DMAPP pool by 147-fold compared with the native pathway. We further demonstrate that cofeeding isoprenol and prenol enhances geranyl diphosphate (GPP) content for monoterpene biosynthesis. More importantly, we established a synthetic three-step route for efficient synthesis of di-and tetraterpene precursor geranylgeranyl diphosphate (GGPP), circumventing the competition with farnesyl diphosphate (FPP) for sterol biosynthesis and elevating the GGPP level by 374-fold. We combine these IUP-supported precursor-forming platforms with downstream terpene synthases to harness their potential and improve the production of industrially relevant terpenoids by several fold. Our exploration provides a universal and effective platform for supporting terpenoid synthesis in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Ma Y, Zu Y, Huang S, Stephanopoulos G
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference