Reference: Li C, et al. (2022) The RNA helicase Ski2 in the fungal pathogen Cryptococcus neoformans highlights key roles in azoles resistance and stress tolerance. Med Mycol 60(11)

Reference Help

Abstract


The yeast SKI (superkiller) complex was originally identified from cells that were infected by the M 'killer' virus. Ski2, as the core of the SKI complex, is a cytoplasmic cofactor and regulator of RNA-degrading exosome. The putative RNA helicase Ski2 was highly conserved from yeast to animals and has been demonstrated to play a key role in the regulation of RNA surveillance, temperature sensitivity, and growth in several yeasts but not yet in Cryptococcus neoformans (C. neoformans). Here, we report the identification of a gene encoding an equivalent Ski2 protein, named SKI2, in the fungal pathogen C. neoformans. To obtain insights into the function of Ski2, we created a mutant strain, ski2Δ, with the CRISPR-Cas9 editing tool. Disruption of SKI2 impaired cell wall integrity. Further investigations revealed the defects of the ski2Δ mutant in resistance to osmotic stresses and extreme growth temperatures. However, significantly, the ability to undergo invasive growth under nutrient-depleted conditions was increased in the ski2Δ mutant. More importantly, our results showed that the ski2Δ mutant exhibited slightly lower virulence and severe susceptibility to anti-ribosomal drugs by comparison to the wild type, but it developed multidrug resistance to azoles and flucytosine. By constructing the double deletion strain ski2Δafr1Δ, we verified that increased Afr1 in ski2Δ contributed to the azole resistance, which might be influenced by nonclassical small interfering RNA. Our work suggests that Ski2 plays critical roles in drug resistance and regulation of gene transcription in the yeast pathogen C. neoformans.

Reference Type
Journal Article
Authors
Li C, Ma X, Ma L, Zhen S, Na Y, Zhang P, Zhu X
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference