Reference: Sun J, et al. (2022) Accumulation and Enrichment of Trace Elements by Yeast Cells and Their Applications: A Critical Review. Microorganisms 10(9)

Reference Help

Abstract


Maintaining the homeostasis balance of trace elements is crucial for the health of organisms. Human health is threatened by diseases caused by a lack of trace elements. Saccharomyces cerevisiae has a wide and close relationship with human daily life and industrial applications. It can not only be used as fermentation products and single-cell proteins, but also as a trace elements supplement that is widely used in food, feed, and medicine. Trace-element-enriched yeast, viz., chromium-, iron-, zinc-, and selenium-enriched yeast, as an impactful microelements supplement, is more efficient, more environmentally friendly, and safer than its inorganic and organic counterparts. Over the last few decades, genetic engineering has been developing large-scaled genetic re-design and reconstruction in yeast. It is hoped that engineered yeast will include a higher concentration of trace elements. In this review, we compare the common supplement forms of several key trace elements. The mechanisms of detoxification and transport of trace elements in yeast are also reviewed thoroughly. Moreover, genes involved in the transport and detoxification of trace elements are summarized. A feasible way of metabolic engineering transformation of S. cerevisiae to produce trace-element-enriched yeast is examined. In addition, the economy, safety, and environmental protection of the engineered yeast are explored, and the future research direction of yeast enriched in trace elements is discussed.

Reference Type
Journal Article | Review
Authors
Sun J, Xu S, Du Y, Yu K, Jiang Y, Weng H, Yuan W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference