Sour beers produced by barrel-aging of conventionally fermented beers are becoming increasingly popular. However, as the intricate interactions between the wood, the microbes and the beer are still unclear, wood maturation often leads to inconsistent end products with undesired sensory properties. Previous research on industrial barrel-aging of beer suggests that beer parameters like the ethanol content and bitterness play an important role in the microbial community composition and beer chemistry, but their exact impact still remains to be investigated. In this study, an experimentally tractable lab-scale system based on an in-vitro community of four key bacteria (Acetobacter malorum, Gluconobacter oxydans, Lactobacillus brevis and Pediococcus damnosus) and four key yeasts (Brettanomyces bruxellensis, Candida friedrichii, Pichia membranifaciens and Saccharomyces cerevisiae) that are consistently associated with barrel-aging of beer, was used to test the hypotheses that beer ethanol and bitterness impact microbial community composition and beer chemistry. Experiments were performed using different levels of ethanol (5.2 v/v%, 8 v/v% and 11 v/v%) and bitterness (13 ppm, 35 ppm and 170 ppm iso-α-acids), and beers were matured for 60 days. Samples were taken after 0, 10, 20, 30 and 60 days to monitor population densities and beer chemistry. Results revealed that all treatments and the maturation time significantly affected the microbial community composition and beer chemistry. More specifically, the ethanol treatments obstructed growth of L. brevis and G. oxydans and delayed fungal growth. The iso-α-acid treatments hindered growth of L. brevis and stimulated growth of P. membranifaciens, while the other strains remained unaffected. Beer chemistry was found to be affected by higher ethanol levels, which led to an increased extraction of wood-derived compounds. Furthermore, the distinct microbial communities also induced changes in the chemical composition of the beer samples, leading to concentration differences in beer- and wood-derived compounds like 4-ethyl guaiacol, 4-ethyl phenol, cis-oak lactone, vanillin, furfural and 5-hydroxymethyl furfural. Altogether, our results indicate that wood-aging of beer is affected by biotic and abiotic parameters, influencing the quality of the final product. Additionally, this work provides a new, cost-effective approach to study the production of barrel-aged beers based on a simplified microbial community model.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|