Reference: Kashif M, et al. (2022) Recombinant expression and biophysical characterization of Mrt4 protein that involved in mRNA turnover and ribosome assembly from Saccharomyces cerevisiae. Bioengineered 13(4):9103-9113

Reference Help

Abstract


The mRNA turnover and ribosome assembly are facilitated by Mrt4 protein from Saccharomyces cerevisiae. In present study, we are reporting the cloning, expression and homogeneous purification of recombinant Mrt4. Mrt4 is a 236-amino-acid-long nuclear protein that plays a very crucial role in mRNA turnover and ribosome assembly during the translation process. mrt4 gene was amplified by polymerase chain reaction and cloned in expression vector pET23a (+) under the bacteriophage T7-inducible promoter and lac operator. Furthermore, protein was purified to homogeneity using immobilized metal affinity chromatography (IMAC) and its homogeneous purification was further validated by immunoblotting with anti-His antibody. The far-UV CD spectra represent that Mrt4 has a typical α helix with characteristic negative minima at 222 and 208 nm. At physiological pH, the fluorescence spectra and CD spectra showed properly folded tertiary and secondary structures of Mrt4, respectively. Saccharomyces Mrt4 protein possesses putative bipartite NLS (nuclear localization signal) at the N-terminal part followed by two well-conserved domains, rRNA-binding domains and translation factor (TF) binding domain. PIPSA analysis evaluates electrostatic interaction properties of proteins and concluded that Mrt4 protein can be used as a fingerprint for classifying Mrt4-like mRNA turnover protein from various species. The availability of an ample amount of protein may help in its biochemical and biophysical characterization, crystallization and identification of new interacting partners of Mrt4.

Reference Type
Journal Article
Authors
Kashif M, Asalam M, Al Shehri SS, Kumar B, Singh N, Akhtar MS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference