Reference: Ghanegolmohammadi F, et al. (2022) Assignment of unimodal probability distribution models for quantitative morphological phenotyping. BMC Biol 20(1):81

Reference Help

Abstract


Background: Cell morphology is a complex and integrative readout, and therefore, an attractive measurement for assessing the effects of genetic and chemical perturbations to cells. Microscopic images provide rich information on cell morphology; therefore, subjective morphological features are frequently extracted from digital images. However, measured datasets are fundamentally noisy; thus, estimation of the true values is an ultimate goal in quantitative morphological phenotyping. Ideal image analyses require precision, such as proper probability distribution analyses to detect subtle morphological changes, recall to minimize artifacts due to experimental error, and reproducibility to confirm the results.

Results: Here, we present UNIMO (UNImodal MOrphological data), a reliable pipeline for precise detection of subtle morphological changes by assigning unimodal probability distributions to morphological features of the budding yeast cells. By defining the data type, followed by validation using the model selection method, examination of 33 probability distributions revealed nine best-fitting probability distributions. The modality of the distribution was then clarified for each morphological feature using a probabilistic mixture model. Using a reliable and detailed set of experimental log data of wild-type morphological replicates, we considered the effects of confounding factors. As a result, most of the yeast morphological parameters exhibited unimodal distributions that can be used as basic tools for powerful downstream parametric analyses. The power of the proposed pipeline was confirmed by reanalyzing morphological changes in non-essential yeast mutants and detecting 1284 more mutants with morphological defects compared with a conventional approach (Box-Cox transformation). Furthermore, the combined use of canonical correlation analysis permitted global views on the cellular network as well as new insights into possible gene functions.

Conclusions: Based on statistical principles, we showed that UNIMO offers better predictions of the true values of morphological measurements. We also demonstrated how these concepts can provide biologically important information. This study draws attention to the necessity of employing a proper approach to do more with less.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ghanegolmohammadi F, Ohnuki S, Ohya Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference