Reference: Sharma J, et al. (2022) Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges. Biotechnol Adv 56:107925

Reference Help

Abstract


Lignocellulosic biomass, a rich and inexpensive source of fermentable and renewable carbon, is the most abundant material on earth. Microbial bioprocessing of lignocellulosic biomass to produce biofuels (bioethanol, biobutanol, biodiesel) is a sustainable blueprint to reduce our depleting energy reserves and carbon footprint. Saccharomyces cerevisiae, being an excellent industrial ethanologenic organism, is an ideal candidate to engineer as a consolidated bio-processing (CBP) host, a concept that integrates the different steps of cellulosic ethanol production, from hydrolysis of cellulose to glucose and fermentation of glucose to ethanol in one step. Owing to the developments in the field of genetic engineering and sequencing technologies, research in the past two decades have made pivotal achievements to realize CBP enabling yeast suited for industrial applications. However, overcoming major limitations such as incomplete substrate catabolism, low titres of heterologous protein expression, sub-optimal operational conditions and impediment due to toxic inhibitors/by-products accumulation is still challenging. This review focuses on the progress achieved in constructing S. cerevisiae to produce bioethanol in a CBP framework. The different techniques of developing cellulolytic yeast strains are initially explained followed by relevant strategies to tackle the key bottlenecks associated with the process. Additionally, engineering efforts towards designing hemicellulose-derived sugar utilizing yeast strains are discussed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Sharma J, Kumar V, Prasad R, Gaur NA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference