Reference: Wang Y, et al. (2022) Construction of synthetic microbial consortia for 2-keto-L-gulonic acid biosynthesis. Synth Syst Biotechnol 7(1):481-489

Reference Help

Abstract


Currently, the establishment of synthetic microbial consortia with rational strategies has gained extensive attention, becoming one of the important frontiers of synthetic biology. Systems biology can offer insights into the design and construction of synthetic microbial consortia. Taking the high-efficiency production of 2-keto-l-gulonic acid (2-KLG) as an example, we constructed a synthetic microbial consortium "Saccharomyces cerevisiae-Ketogulonigenium vulgare" based on systems biology analysis. In the consortium, K. vulgare was the 2-KLG producing strain, and S. cerevisiae acted as the helper strain. Comparative transcriptomic analysis was performed on an engineered S. cerevisiae (VTC2) and a wild-type S. cerevisiae BY4741. The results showed that the up-regulated genes in VTC2, compared with BY4741, were mainly involved in glycolysis, TCA cycle, purine metabolism, and biosynthesis of amino acids, B vitamins, and antioxidant proteases, all of which play important roles in promoting the growth of K. vulgare. Furthermore, Vitamin C produced by VTC2 could further relieve the oxidative stress in the environment to increase the production of 2-KLG. Therefore, VTC2 would be of great advantage in working with K. vulgare. Thus, the synthetic microbial consortium "VTC2-K. vulgare" was constructed based on transcriptomics analyses, and the accumulation of 2-KLG was increased by 1.49-fold compared with that of mono-cultured K. vulgare, reaching 13.2 ± 0.52 g/L. In addition, the increased production of 2-KLG was accompanied by the up-regulated activities of superoxide dismutase and catalase in the medium and the up-regulated oxidative stress-related genes (sod, cat and gpd) in K. vulgare. The results indicated that the oxidative stress in the synthetic microbial consortium was efficiently reduced. Thus, systems analysis confirmed a favorable symbiotic relationship between microorganisms, providing guidance for further engineering synthetic consortia.

Reference Type
Journal Article
Authors
Wang Y, Li H, Liu Y, Zhou M, Ding M, Yuan Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference