Reference: Tian B, et al. (2021) B- and N-doped carbon dots by one-step microwave hydrothermal synthesis: tracking yeast status and imaging mechanism. J Nanobiotechnology 19(1):456

Reference Help

Abstract


Background: Carbon dots (CDs) are widely used in cell imaging due to their excellent optical properties, biocompatibility and low toxicity. At present, most of the research on CDs focuses on biomedical application, while there are few studies on the application of microbial imaging.

Results: In this study, B- and N-doped carbon dots (BN-CDs) were prepared from citric acid, ethylenediamine, and boric acid by microwave hydrothermal method. Based on BN-CDs labeling yeast, the dead or living of yeast cell could be quickly identified, and their growth status could also be clearly observed. In order to further observe the morphology of yeast cell under different lethal methods, six methods were used to kill the cells and then used BN-CDs to label the cells for imaging. More remarkably, imaging of yeast cell with ultrasound and antibiotics was significantly different from other imaging due to the overflow of cell contents. In addition, the endocytosis mechanism of BN-CDs was investigated. The cellular uptake of BN-CDs is dose, time and partially energy-dependent along with the involvement of passive diffusion. The main mechanism of endocytosis is caveolae-mediated.

Conclusion: BN-CDs can be used for long-term stable imaging of yeast, and the study provides basic research for applying CDs to microbiol imaging.

Reference Type
Journal Article
Authors
Tian B, Fu T, Wan Y, Ma Y, Wang Y, Feng Z, Jiang Z
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference