Reference: Waite KA, et al. (2022) Proteaphagy is specifically regulated and requires factors dispensable for general autophagy. J Biol Chem 298(1):101494

Reference Help

Abstract


Changing physiological conditions can increase the need for protein degradative capacity in eukaryotic cells. Both the ubiquitin-proteasome system and autophagy contribute to protein degradation. However, these processes can be differently regulated depending on the physiological conditions. Strikingly, proteasomes themselves can be a substrate for autophagy. The signals and molecular mechanisms that govern proteasome autophagy (proteaphagy) are only partly understood. Here, we used immunoblots, native gel analyses, and fluorescent microscopy to understand the regulation of proteaphagy in response to genetic and small molecule-induced perturbations. Our data indicate that chemical inhibition of the master nutrient sensor TORC1 (inhibition of which induces general autophagy) with rapamycin induces a bi-phasic response where proteasome levels are upregulated after an autophagy-dependent reduction. Surprisingly, several conditions that result in inhibited TORC1, such as caffeinine treatment or nitrogen starvation, only induced proteaphagy (i.e., without any proteasome upregulation), suggesting a convergence of signals upstream of proteaphagy under different physiological conditions. Indeed, we found that several conditions that activated general autophagy did not induce proteaphagy, further distinguishing proteaphagy from general autophagy. Consistent with this, we show that Atg11, a selective autophagy receptor, as well as the MAP kinases Mpk1, Mkk1, and Mkk2 all play a role in autophagy of proteasomes, although they are dispensable for general autophagy. Taken together, our data provide new insights into the molecular regulation of proteaphagy by demonstrating that degradation of proteasome complexes is specifically regulated under different autophagy-inducing conditions.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Waite KA, Burris A, Vontz G, Lang A, Roelofs J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference