Reference: Mishra A, et al. (2021) Thermodynamics of adsorption of alcohol dehydrogenase on the gold nanoparticle surface: a model based analysis versus direct measurement. Phys Chem Chem Phys 23(42):24365-24376

Reference Help

Abstract


Characterization of the nanoparticle protein corona has gained tremendous importance lately. The parameters which quantitatively establish a specific nanoparticle-protein interaction need to be measured accurately since good quality data are necessary for the elucidation of the underlying mechanism and accurate molecular dynamics simulation. Here, we have employed surface sensitive second harmonic light scattering (SHLS) for investigating the adsorption of a tetrameric protein, alcohol dehydrogenase (ADH, Saccharomyces cerevisiae 147 kDa), on 16 nm, 27 nm, 41 nm, and 69 nm citrate capped gold nanoparticles (GNPs) in aqueous phosphate buffer at pH 7. We have extracted the binding constant, number of ADH bound per GNP, Gibbs free energy (ΔG°) from the decay of the second harmonic scattered signal as a function of protein concentration using a modified version of the Langmuir adsorption isotherm. The data obtained were checked with another technique, dynamic light scattering, using the same modified Langmuir model (MLM). While the binding constants measured by the two methods are in agreement, the number of ADH bound to each GNP obtained by the two methods varies a lot. In order to further probe this binding independent of a model fitting, we used an orthogonal fluorescence assay which measures the number of ADH bound to a GNP directly, and no model-fitting is necessary. We then used temperature dependent SHLS to measure the heat of adsorption (ΔH°) and entropy (ΔS°) for ADH-GNP corona formation. We found that the equilibrium binding constant (Kb) obtained from SHLS is of the order of 109 M-1 and the formation of the GNP-ADH corona is spontaneous with ΔG° ∼ -55 kJ mol-1. However, the adsorption is modestly endothermic, accompanied by a large increase in entropy. Stated differently, GNP-ADH corona formation is entropically driven. This is perhaps due to the tremendous disruption of the water structure at the negatively charged interface upon the arrival of the protein within the bonding distance to it. We believe that the SHLS technique is highly sensitive and reliable, at very low concentrations of both nanoparticles and proteins, for the quantitative estimation of the thermodynamic parameters of nanoparticle-protein corona formation, where many other techniques may fall short.

Reference Type
Journal Article
Authors
Mishra A, Mishra K, Bose D, Chakrabarti A, Das PK
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference