Reference: Chen X, et al. (2021) Deletion of the MBP1 Gene, Involved in the Cell Cycle, Affects Respiration and Pseudohyphal Differentiation in Saccharomyces cerevisiae. Microbiol Spectr 9(1):e0008821

Reference Help

Abstract


Mbp1p is a component of MBF (MluI cell cycle box binding factor, Mbp1p-Swi6p) and is well known to regulate the G1-S transition of the cell cycle. However, few studies have provided clues regarding its role in fermentation. This work aimed to recognize the function of the MBP1 gene in ethanol fermentation in a wild-type industrial Saccharomyces cerevisiae strain. MBP1 deletion caused an obvious decrease in the final ethanol concentration under oxygen-limited (without agitation), but not under aerobic, conditions (130 rpm). Furthermore, the mbp1Δ strain showed 84% and 35% decreases in respiration intensity under aerobic and oxygen-limited conditions, respectively. These findings indicate that MBP1 plays an important role in responding to variations in oxygen content and is involved in the regulation of respiration and fermentation. Unexpectedly, mbp1Δ also showed pseudohyphal growth, in which cells elongated and remained connected in a multicellular arrangement on yeast extract-peptone-dextrose (YPD) plates. In addition, mbp1Δ showed an increase in cell volume, associated with a decrease in the fraction of budded cells. These results provide more detailed information about the function of MBP1 and suggest some clues to efficiently improve ethanol production by industrially engineered yeast strains. IMPORTANCE Saccharomyces cerevisiae is an especially favorable organism used for ethanol production. However, inhibitors and high osmolarity conferred by fermentation broth, and high concentrations of ethanol as fermentation runs to completion, affect cell growth and ethanol production. Therefore, yeast strains with high performance, such as rapid growth, high tolerance, and high ethanol productivity, are highly desirable. Great efforts have been made to improve their performance by evolutionary engineering, and industrial strains may be a better start than laboratory ones for industrial-scale ethanol production. The significance of our research is uncovering the function of MBP1 in ethanol fermentation in a wild-type industrial S. cerevisiae strain, which may provide clues to engineer better-performance yeast in producing ethanol. Furthermore, the results that lacking MBP1 caused pseudohyphal growth on YPD plates could shed light on the development of xylose-fermenting S. cerevisiae, as using xylose as the sole carbon source also caused pseudohyphal growth.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chen X, Lu Z, Chen Y, Wu R, Luo Z, Lu Q, Guan N, Chen D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference