Reference: Harris C, et al. (2021) Yeast-based screening of cancer mutations in the DNA damage response protein Mre11 demonstrates importance of conserved capping domain residues. Mol Biol Rep 48(5):4107-4119

Reference Help

Abstract


DNA damage response (DDR) pathways are initiated to prevent mutations from being passed on in the event of DNA damage. Mutations in DDR proteins can contribute to the development and maintenance of cancer cells, but many mutations observed in human tumors have not been functionally characterized. Because a proper response to DNA damage is fundamental to living organisms, DDR proteins and processes are often highly conserved. The goal of this project was to use Saccharomyces cerevisiae as a model for functional screening of human cancer mutations in conserved DDR proteins. After comparing the cancer mutation frequency and conservation of DDR proteins, Mre11 was selected for functional screening. A subset of mutations in conserved residues was analyzed by structural modeling and screened for functional effects in yeast Mre11. Yeast expressing wild type or mutant Mre11 were then assessed for DNA damage sensitivity using hydroxyurea (HU) and methyl methanesulfonate (MMS). The results were further validated in human cancer cells. The N-terminal point mutations tested in yeast Mre11 do not confer sensitivity to DNA damage sensitivity, suggesting that these residues are dispensable for yeast Mre11 function and may have conserved sequence without conserved function. However, a mutation near the capping domain associated with breast and colorectal cancers compromises Mre11 function in both yeast and human cells. These results provide novel insight into the function of this conserved capping domain residue and demonstrate a framework for yeast-based screening of cancer mutations.

Reference Type
Journal Article
Authors
Harris C, Savas J, Ray S, Shanle EK
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference