Reference: Vila-Santa A, et al. (2021) Prospecting Biochemical Pathways to Implement Microbe-Based Production of the New-to-Nature Platform Chemical Levulinic Acid. ACS Synth Biol 10(4):724-736

Reference Help

Abstract


Levulinic acid is a versatile platform molecule with potential to be used as an intermediate in the synthesis of many value-added products used across different industries, from cosmetics to fuels. Thus far, microbial biosynthetic pathways having levulinic acid as a product or an intermediate are not known, which restrains the development and optimization of a microbe-based process envisaging the sustainable bioproduction of this chemical. One of the doors opened by synthetic biology in the design of microbial systems is the implementation of new-to-nature pathways, that is, the assembly of combinations of enzymes not observed in vivo, where the enzymes can use not only their native substrates but also non-native ones, creating synthetic steps that enable the production of novel compounds. Resorting to a combined approach involving complementary computational tools and extensive manual curation, in this work, we provide a thorough prospect of candidate biosynthetic pathways that can be assembled for the production of levulinic acid in Escherichia coli or Saccharomyces cerevisiae. Out of the hundreds of combinations screened, five pathways were selected as best candidates on the basis of the availability of substrates and of candidate enzymes to catalyze the synthetic steps (that is, those steps that involve conversions not previously described). Genome-scale metabolic modeling was used to assess the performance of these pathways in the two selected hosts and to anticipate possible bottlenecks. Not only does the herein described approach offer a platform for the future implementation of the microbial production of levulinic acid but also it provides an organized research strategy that can be used as a framework for the implementation of other new-to-nature biosynthetic pathways for the production of value-added chemicals, thus fostering the emerging field of synthetic industrial microbiotechnology.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Vila-Santa A, Islam MA, Ferreira FC, Prather KLJ, Mira NP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference