Reference: Knorre DA, et al. (2020) Do Multiple Drug Resistance Transporters Interfere with Cell Functioning under Normal Conditions? Biochemistry (Mosc) 85(12):1560-1569

Reference Help

Abstract


Eukaryotic cells rely on multiple mechanisms to protect themselves from exogenous toxic compounds. For instance, cells can limit penetration of toxic molecules through the plasma membrane or sequester them within the specialized compartments. Plasma membrane transporters with broad substrate specificity confer multiple drug resistance (MDR) to cells. These transporters efflux toxic compounds at the cost of ATP hydrolysis (ABC-transporters) or proton influx (MFS-transporters). In our review, we discuss the possible costs of having an active drug-efflux system using yeast cells as an example. The pleiotropic drug resistance (PDR) subfamily ABC-transporters are known to constitutively hydrolyze ATP even without any substrate stimulation or transport across the membrane. Besides, some MDR-transporters have flippase activity allowing transport of lipids from inner to outer lipid layer of the plasma membrane. Thus, excessive activity of MDR-transporters can adversely affect plasma membrane properties. Moreover, broad substrate specificity of ABC-transporters also suggests the possibility of unintentional efflux of some natural metabolic intermediates from the cells. Furthermore, in some microorganisms, transport of quorum-sensing factors is mediated by MDR transporters; thus, overexpression of the transporters can also disturb cell-to-cell communications. As a result, under normal conditions, cells keep MDR-transporter genes repressed and activate them only upon exposure to stresses. We speculate that exploiting limitations of the drug-efflux system is a promising strategy to counteract MDR in pathogenic fungi.

Reference Type
Journal Article | Review
Authors
Knorre DA, Galkina KV, Shirokovskikh T, Banerjee A, Prasad R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference