Reference: Kuliešienė N, et al. (2021) Changes in Energy Status of Saccharomyces cerevisiae Cells during Dehydration and Rehydration. Microorganisms 9(2)

Reference Help

Abstract


Anhydrobiosis is the state of life when cells are exposed to waterless conditions and gradually cease their metabolism. In this study, we determined the sequence of events in Saccharomyces cerevisiae energy metabolism during processes of dehydration and rehydration. The intensities of respiration and acidification of the medium, the amounts of phenyldicarbaundecaborane (PCB-) bound to yeast membranes, and the capabilities of cells to accumulate K+ were assayed using an electrochemical monitoring system, and the intracellular content of ATP was measured using a bioluminescence assay. Mesophilic, semi-resistant to desiccation S. cerevisiae strain 14 and thermotolerant, very resistant to desiccation S. cerevisiae strain 77 cells were compared. After 22 h of drying, it was possible to restore the respiration activity of very resistant to desiccation strain 77 cells, especially when glucose was available. PCB- binding also indicated considerably higher metabolic activity of dehydrated S. cerevisiae strain 77 cells. Electrochemical K+ content and medium acidification assays indicated that permeabilization of the plasma membrane in cells of both strains started almost simultaneously, after 8-10 h of desiccation, but semi-resistant strain 14 cells maintained the K+ gradient for longer and more strongly acidified the medium. For both cells, the fast rehydration in water was less efficient compared to reactivation in the growth medium, indicating the need for nutrients for the recovery. Higher viability of strain 77 cells after rehydration could be due to the higher stability of their mitochondria.

Reference Type
Journal Article
Authors
Kuliešienė N, Žūkienė R, Khroustalyova G, Chang CR, Rapoport A, Daugelavičius R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference