Reference: Chen H, et al. (2021) Increasing glycolysis by deletion of kcs1 and arg82 improved S-adenosyl-L-methionine production in Saccharomyces cerevisiae. AMB Express 11(1):20

Reference Help

Abstract


Reprogramming glycolysis for directing glycolytic metabolites to a specific metabolic pathway is expected to be useful for increasing microbial production of certain metabolites, such as amino acids, lipids or considerable secondary metabolites. In this report, a strategy of increasing glycolysis by altering the metabolism of inositol pyrophosphates (IPs) for improving the production of S-adenosyl-L-methionine (SAM) for diverse pharmaceutical applications in yeast is presented. The genes associated with the metabolism of IPs, arg82, ipk1 and kcs1, were deleted, respectively, in the yeast strain Saccharomyces cerevisiae CGMCC 2842. It was observed that the deletions of kcs1 and arg82 increased SAM by 83.3 % and 31.8 %, respectively, compared to that of the control. In addition to the improved transcription levels of various glycolytic genes and activities of the relative enzymes, the levels of glycolytic intermediates and ATP were also enhanced. To further confirm the feasibility, the kcs1 was deleted in the high SAM-producing strain Ymls1ΔGAPmK which was deleted malate synthase gene mls1 and co-expressed the Acetyl-CoA synthase gene acs2 and the SAM synthase gene metK1 from Leishmania infantum, to obtain the recombinant strain Ymls1Δkcs1ΔGAPmK. The level of SAM in Ymls1Δkcs1ΔGAPmK reached 2.89 g L-1 in a 250-mL flask and 8.86 g L-1 in a 10-L fermentation tank, increasing 30.2 % and 46.2 %, respectively, compared to those levels in Ymls1ΔGAPmK. The strategy of increasing glycolysis by deletion of kcs1 and arg82 improved SAM production in yeast.

Reference Type
Journal Article
Authors
Chen H, Zhu N, Wang Y, Gao X, Song Y, Zheng J, Peng J, Zhang X
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference