Reference: Guo L, et al. (2020) Integrative omics analysis reveals relationships of genes with synthetic lethal interactions through a pan-cancer analysis. Comput Struct Biotechnol J 18:3243-3254

Reference Help

Abstract


Synthetic lethality is thought to play an important role in anticancer therapies. Herein, to understand the potential distributions and relationships between synthetic lethal interactions between genes, especially for pairs deriving from different sources, we performed an integrative analysis of genes at multiple molecular levels. Based on inter-species phylogenetic conservation of synthetic lethal interactions, gene pairs from yeast and humans were analyzed; a total of 37,588 candidate gene pairs containing 7,816 genes were collected. Of these, 49.74% of genes had 2-10 interactions, 22.93% were involved in hallmarks of cancer, and 21.61% were identified as core essential genes. Many genes were shown to have important biological roles via functional enrichment analysis, and 65 were identified as potentially crucial in the pathophysiology of cancer. Gene pairs with dysregulated expression patterns had higher prognostic values. Further screening based on mutation and expression levels showed that remaining gene pairs were mainly derived from human predicted or validated pairs, while most predicted pairs from yeast were filtered from analysis. Genes with synthetic lethality were further analyzed with their interactive microRNAs (miRNAs) at the isomiR level which have been widely studied as negatively regulatory molecules. The miRNA-mRNA interaction network revealed that many synthetic lethal genes contributed to the cell cycle (seven of 12 genes), cancer pathways (five of 12 genes), oocyte meiosis, the p53 signaling pathway, and hallmarks of cancer. Our study contributes to the understanding of synthetic lethal interactions and promotes the application of genetic interactions in further cancer precision medicine.

Reference Type
Journal Article
Authors
Guo L, Li S, Qian B, Wang Y, Duan R, Jiang W, Kang Y, Dou Y, Yang G, Shen L, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference