Reference: Wang Z, et al. (2020) Identification of Highest-Affinity Binding Sites of Yeast Transcription Factor Families. J Chem Inf Model 60(3):1876-1883

Reference Help

Abstract


Transcription factors (TFs) play a crucial role in controlling key cellular processes and responding to the environment. Yeast is a single-cell fungal organism that is a vital biological model organism for studying transcription and translation in basic biology. The transcriptional control process of yeast cells has been extensively calculated and studied using traditional methods and high-throughput technologies. However, the identities of transcription factors that regulate major functional categories of genes remain unknown. Due to the avalanche of biological data in the post-genomic era, it is an urgent need to develop automated computational methods to enable accurate identification of efficient transcription factor binding sites from the large number of candidates. In this paper, we analyzed high-resolution DNA-binding profiles and motifs for TFs, covering all possible contiguous 8-mers. First, we divided all 8-mer motifs into 16 various categories and selected all sorts of samples from each category by setting the threshold of E-score. Then, we employed five feature representation methods. Also, we adopted a total of four feature selection methods to filter out useless features. Finally, we used Extreme Gradient Boosting (XGBoost) as our base classifier and then utilized the one-vs-rest tactics to build 16 binary classifiers to solve this multiclassification problem. In the experiment, our method achieved the best performance with an overall accuracy of 79.72% and Mathew's correlation coefficient of 0.77. We found the similarity relationship among each category from different TF families and obtained sequence motif schematic diagrams via multiple sequence alignment. The complexity of DNA recognition may act as an important role in the evolution of gene regulation. Source codes are available at https://github.com/guofei-tju/tfbs.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wang Z, He W, Tang J, Guo F
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference