Reference: Han JW, et al. (2020) The Antifungal Test: An Efficient Screening Tool for the Discovery of Microbial Metabolites with Respiratory Inhibitory Activity. Mycobiology 48(4):326-329

Reference Help

Abstract


Valuable natural compounds produced by a variety of microorganisms can be used as lead molecules for development of new agrochemicals. Furthermore, high-throughput in vitro screening systems with specific modes of action can increase the probability of discovery of new fungicides. In the current study, a rapid assay tested with various microbes was developed to determine the degree of respiratory inhibition of Saccharomyces cerevisiae in two different liquid media, YG (containing a fermentable carbon source) and NFYG (containing a non-fermentable carbon source). Based on this system, we screened 100 fungal isolates that were classified into basidiomycetes, to find microbial secondary metabolites that act as respiratory inhibitors. Consequently, of the 100 fungal species tested, the culture broth of an IUM04881 isolate inhibited growth of S. cerevisiae in NFYG medium, but not in YG medium. The result is comparable to that from treatment with kresoxim-methyl used as a control, suggesting that the culture broth of IUM04881 isolate might contain active compounds showing the inhibition activity for respiratory chain. Based on the assay developed in this study and spectroscopic analysis, we isolated and identified an antifungal compound (-)-oudemansin A from culture broth of IUM04881 that is identified as Oudemansiella venosolamellata. This is the first report that (-)-oudemansin A is identified from O. venosolamellata in Korea. Taken together, the development of this assay will accelerate efforts to find and identify natural respiratory inhibitors from various microbes.

Reference Type
Journal Article
Authors
Han JW, Kim B, Oh M, Choi J, Choi GJ, Kim H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference