Reference: Wu J, et al. (2020) A novel integrated process to convert cellulose and hemicellulose in rice straw to biobutanol. Environ Res 186:109580

Reference Help

Abstract


A novel integrated process was established in this study to produce butanol from rice straw. In the first pretreatment, an alternative NaOH/Urea preatment operated at -12 oC efficiently removed 10.9 g lignin and preserved 91.54% cellulose and hemicellulose in 100 g rice straw. Subsequently, crude cellulase produced from Trichoderma viride was used to convert pretreated rice straw to mono-sugars for fermentation. The yields of glucose, xylose and arabiose obtained from 100 g rice straw were 31 g, 13.4 g and 0.48 g, respectively, resulting in a 69.45% saccharification efficiency of crude enzyme. Finally, to alleviate the carbon catabolite repression (CCR) and enhance butanol production, the coculture system of Clostridium beijerinckii and Saccharomyces cerevisiae was applied. Compared to monoculture of C. beijerinckii F-6, more sugars were consumed, especially the reduction rate of xylose reached to 81.87%, 32.99% higher than that in monoculture system. With more substrate facilitied into metabolism, the butanol concentration reached to 10.62 g/L corresponding to 0.28 g/g substrate, 115.38% higher than that in monoculture system. Overall, this integrated process was a low-energy consumption and efficient method for butanol production from rice straw.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wu J, Dong L, Liu B, Xing D, Zhou C, Wang Q, Wu X, Feng L, Cao G
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference