Reference: Iwami R, et al. (2020) The function of Spt3, a subunit of the SAGA complex, in PGK1 transcription is restored only partially when reintroduced by plasmid into taf1 spt3 double mutant yeast strains. Genes Genet Syst 95(3):151-163

Reference Help

Abstract


In Saccharomyces cerevisiae, class II gene promoters contain two classes of TATA elements: the TATA box and the TATA-like element. Functional loss of TFIID and SAGA transcription complexes selectively impacts steady-state mRNA levels expressed from TATA-like element-containing (i.e., TATA-less) and TATA box-containing promoters, respectively. While nascent RNA analysis has revealed that TFIID and SAGA are required for both types of promoters, the division of their roles remains unclear. We show here that transcription from the PGK1 promoter decreased in some cases by more than half after disruption of the TATA box or SPT3 (spt3Δ), whereas spt3Δ did not affect transcription from the TATA-less promoter, consistent with the prevailing view that Spt3 functions specifically in a TATA box-dependent manner. Transcription from this promoter was abolished in the spt3Δ taf1-N568Δ strain but unaffected in the taf1-N568Δ strain, regardless of TATA box presence, suggesting that TFIID was functionally dispensable for PGK1 transcription at least in the SPT3 strain. Furthermore, transcription from the TATA box-containing PGK1 promoter was slightly reduced in the taf1 strain lacking TAND (taf1-ΔTAND) upon temperature shift from 25 to 37 ℃, with restoration to normal levels within 2 h, in an Spt3-dependent manner. Interestingly, when SPT3 was reintroduced into the spt3Δ TAF1, spt3Δ taf1-N568Δ or spt3Δ taf1-ΔTAND strain, TATA box-dependent transcription from this promoter was largely restored, but TFIID independence in transcription was not restored, especially from the TATA-less promoter, and transient TAND/Spt3-dependent fluctuations of transcription after the temperature shift were also not recapitulated. Collectively, these observations suggest that Spt3 has multiple functions in PGK1 transcription, some of which may be intimately connected to Taf1 function and may therefore become unrestorable when the TFIID and SAGA functions are simultaneously compromised.

Reference Type
Journal Article
Authors
Iwami R, Takai N, Kokubo T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference