Reference: Takahashi TS, et al. (2020) Effects of chain length and geometry on the activation of DNA damage bypass by polyubiquitylated PCNA. Nucleic Acids Res 48(6):3042-3052

Reference Help

Abstract


Ubiquitylation of the eukaryotic sliding clamp, PCNA, activates a pathway of DNA damage bypass that facilitates the replication of damaged DNA. In its monoubiquitylated form, PCNA recruits a set of damage-tolerant DNA polymerases for translesion synthesis. Alternatively, modification by K63-linked polyubiquitylation triggers a recombinogenic process involving template switching. Despite the identification of proteins interacting preferentially with polyubiquitylated PCNA, the molecular function of the chain and the relevance of its K63-linkage are poorly understood. Using genetically engineered mimics of polyubiquitylated PCNA, we have now examined the properties of the ubiquitin chain required for damage bypass in budding yeast. By varying key parameters such as the geometry of the junction, cleavability and capacity for branching, we demonstrate that either the structure of the ubiquitin-ubiquitin junction or its dynamic assembly or disassembly at the site of action exert a critical impact on damage bypass, even though known effectors of polyubiquitylated PCNA are not strictly linkage-selective. Moreover, we found that a single K63-junction supports substantial template switching activity, irrespective of its attachment site on PCNA. Our findings provide insight into the interrelationship between the two branches of damage bypass and suggest the existence of a yet unidentified, highly linkage-selective receptor of polyubiquitylated PCNA.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Takahashi TS, Wollscheid HP, Lowther J, Ulrich HD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference