Reference: Vo T, et al. (2020) Chemotropism among populations of yeast cells with spatiotemporal resolution in a biofabricated microfluidic platform. Biomicrofluidics 14(1):014108

Reference Help

Abstract


Chemotropism is an essential response of organisms to external chemical gradients that direct the growth of cells toward the gradient source. Chemotropic responses between single cells have been studied using in vitro gradients of synthetically derived signaling molecules and helped to develop a better understanding of chemotropism in multiple organisms. However, dynamic changes including spatial changes to the gradient as well as fluctuations in levels of cell generated signaling molecules can result in the redirection of chemotropic responses, which can be difficult to model with synthetic peptides and single cells. An experimental system that brings together populations of cells to monitor the population-scale chemotropic responses yet retain single cell spatiotemporal resolution would be useful to further inform on models of chemotropism. Here, we describe a microfluidic platform that can measure the chemotropic response between populations of mating yeast A- and α-cells with spatiotemporal programmability and sensitivity by positioning cell populations side by side in calcium alginate hydrogels along semipermeable membranes with micrometer spatial control. The mating phenotypes of the yeast populations were clearly observed over hours. Three distinct responses were observed depending on the distance between the A- and α-cell populations: the cells either continued to divide, arrest, and develop a stereotypical polarized projection termed a "shmoo" toward the cells of opposite mating type or formed shmoos in random directions. The results from our studies of yeast mating suggest that the biofabricated microfluidic platform can be adopted to study population-scale, spatial-sensitive cell-cell signaling behaviors that would be challenging using conventional approaches.

Reference Type
Journal Article
Authors
Vo T, Shah SB, Choy JS, Luo X
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference