Reference: Garapati HS, et al. (2020) Predicting subcellular localization of proteins using protein-protein interaction data. Genomics 112(3):2361-2368

Reference Help

Abstract


The knowledge of subcellular localization of proteins can provide useful clues about their functions. The conventional methods to determine the subcellular localization are unable to keep pace with the rate at which the new data is being generated. Thus, though sequence information is available, the localization and function of a number of proteins remains unknown. In this study, we have developed a script that makes use of the physical interactors of a protein and their localization data to predict the subcellular localization. We used the script to predict the localization of yeast proteins for which there is no localization data. Further, we experimentally verified the predicted localization for six arbitrarily chosen proteins and found our predictions to be correct for five of the proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Validation Study
Authors
Garapati HS, Male G, Mishra K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference