Reference: Kulkarni SD, et al. (2019) Temperature-dependent regulation of upstream open reading frame translation in S. cerevisiae. BMC Biol 17(1):101

Reference Help

Abstract


Background: Translation of an mRNA in eukaryotes starts at an AUG codon in most cases, but near-cognate codons (NCCs) such as UUG, ACG, and AUU can also be used as start sites at low levels in Saccharomyces cerevisiae. Initiation from NCCs or AUGs in the 5'-untranslated regions (UTRs) of mRNAs can lead to translation of upstream open reading frames (uORFs) that might regulate expression of the main ORF (mORF). Although there is some circumstantial evidence that the translation of uORFs can be affected by environmental conditions, little is known about how it is affected by changes in growth temperature.

Results: Using reporter assays, we found that changes in growth temperature can affect translation from NCC start sites in yeast cells, suggesting the possibility that gene expression could be regulated by temperature by altering use of different uORF start codons. Using ribosome profiling, we provide evidence that growth temperature regulates the efficiency of translation of nearly 200 uORFs in S. cerevisiae. Of these uORFs, most that start with an AUG codon have increased translational efficiency at 37 °C relative to 30 °C and decreased efficiency at 20 °C. For translationally regulated uORFs starting with NCCs, we did not observe a general trend for the direction of regulation as a function of temperature, suggesting mRNA-specific features can determine the mode of temperature-dependent regulation. Consistent with this conclusion, the position of the uORFs in the 5'-leader relative to the 5'-cap and the start codon of the main ORF correlates with the direction of temperature-dependent regulation of uORF translation. We have identified several novel cases in which changes in uORF translation are inversely correlated with changes in the translational efficiency of the downstream main ORF. Our data suggest that translation of these mRNAs is subject to temperature-dependent, uORF-mediated regulation.

Conclusions: Our data suggest that alterations in the translation of specific uORFs by temperature can regulate gene expression in S. cerevisiae.

Reference Type
Journal Article | Research Support, N.I.H., Intramural
Authors
Kulkarni SD, Zhou F, Sen ND, Zhang H, Hinnebusch AG, Lorsch JR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference