Reference: Lemke T, et al. (2019) EncoderMap(II): Visualizing Important Molecular Motions with Improved Generation of Protein Conformations. J Chem Inf Model 59(11):4550-4560

Reference Help

Abstract


Dimensionality reduction can be used to project high-dimensional molecular data into a simplified, low-dimensional map. One feature of our recently introduced dimensionality reduction technique EncoderMap, which relies on the combination of an autoencoder with multidimensional scaling, is its ability to do the reverse. It is able to generate conformations for any selected points in the low-dimensional map. This transfers the simplified, low-dimensional map back into the high-dimensional conformational space. Although the output is again high-dimensional, certain aspects of the simplification are preserved. The generated conformations only mirror the most dominant conformational differences that determine the positions of conformational states in the low-dimensional map. This allows depicting such differences and-in consequence-visualizing molecular motions and gives a unique perspective on high-dimensional conformational data. In our previous work, protein conformations described in backbone dihedral angle space were used as the input for EncoderMap, and conformations were also generated in this space. For large proteins, however, the generation of conformations is inaccurate with this approach due to the local character of backbone dihedral angles. Here, we present an improved variant of EncoderMap which is able to generate large protein conformations that are accurate in short-range and long-range orders. This is achieved by differentiable reconstruction of Cartesian coordinates from the generated dihedrals, which allows adding a contribution to the cost function that monitors the accuracy of all pairwise distances between the Cα-atoms of the generated conformations. The improved capabilities to generate conformations of large, even multidomain, proteins are demonstrated for two examples: diubiquitin and a part of the Ssa1 Hsp70 yeast chaperone. We show that the improved variant of EncoderMap can nicely visualize motions of protein domains relative to each other but is also able to highlight important conformational changes within the individual domains.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lemke T, Berg A, Jain A, Peter C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference