Reference: Shen Y, et al. (2019) Ruminally protected and unprotected Saccharomyces cerevisiae fermentation products as alternatives to antibiotics in finishing beef steers1. J Anim Sci 97(10):4323-4333

Reference Help

Abstract


The objectives of this study were to assess the effects of Saccharomyces cerevisiae fermentation products (SCFP; NaturSafe, SCFPns; and Original XPC, XPC; Diamond V) on growth performance, carcass traits, immune response, and antimicrobial resistance in beef steers fed high-grain diets. Ninety Angus steers (initial body weight [BW], 533 ± 9.8 kg) were assigned to a randomized complete design with 6 treatments (n = 15/treatment): 1) control, 2) low (12 g SCFPns·steer-1·d-1), 3) medium (15 g SCFPns·steer-1·d-1), 4) high SCFP (18 g SCFPns·steer-1·d-1), 5) encapsulated XPC (eXPC; 7 g XPC·steer-1·d-1 encapsulated with 9 g capsule material), and 6) antibiotics (ANT; 330 mg monensin + 110 mg tylosin·steer-1·d-1). Steers were fed ad libitum a diet containing 10% barley silage and 90% barley grain concentrate mix (dry matter basis) for 105 d. Increasing SCFPns tended (P < 0.09) to linearly increase feed efficiency. Average daily gain (ADG) tended (P < 0.10) to be greater in steers supplemented with eXPC than control. The SCFPns also tended (P < 0.10) to linearly increase marbling score. Proportion of severely abscessed livers tended (P < 0.10) to be lower in steers supplemented with medium and high SCFPns, eXPC, or ANT. A treatment × days on feed interaction were noticed (P < 0.01) for blood glucose, blood urea nitrogen (BUN), and acute phase proteins. The concentration of blood glucose responded quadratically (P < 0.05) on days 28 and 56, whereas BUN linearly (P < 0.01) increased on day 105 with increasing SCFPns dose. The SCFPns linearly increased haptoglobin (P < 0.03) and serum amyloid A (SAA;P < 0.05) concentrations on day 105, and lipopolysaccharide binding protein (LBP;P < 0.01) on days 56 and 105. The percentage of erythromycin-resistant and erythromycin + tetracycline-resistant enterococci was greater (P < 0.05) with ANT than control, SCFPns, and eXPC, whereas no difference was observed among control, SCFPns, and eXPC. No treatment effect was detected on the percentage of tetracycline-resistant enterococci. These results indicate that feeding SCFPns and eXPC was beneficial in improving ADG, feed efficiency and decreasing liver abscesses in a manner comparable to ANT. Unlike antibiotics, SCFPns or eXPC did not increase antimicrobial resistance. Both SCFPns and eXPC are potential alternatives to in-feed antibiotics.

Reference Type
Journal Article
Authors
Shen Y, Davedow T, Ran T, Saleem AM, Yoon I, Narvaez C, Mcallister TA, Yang W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference