Reference: Mekoue Nguela J, et al. (2019) Effect of grape must polyphenols on yeast metabolism during alcoholic fermentation. Food Res Int 121:161-175

Reference Help

Abstract


In red winemaking, polyphenols from grape berry pericarp and seed are extracted during fermentation and their interactions with yeast have been widely demonstrated. However, information concerning the impact of extracted polyphenols on yeast metabolism during fermentation is missing. The aim of this study was to further explore interactions between yeasts and polyphenols and to identify their effects on yeast metabolism and fermentation kinetics. This impact was studied in synthetic musts for four commercial Saccharomyces cerevisiae wine strains, using polyphenols purified from a thermovinification must, in both stressed (phytosterol deficient medium) and non-stressed conditions. Interactions between grape polyphenols and yeast cells were substantiated from the early stage of fermentation by means of epifluorescence and confocal microscopy. If these interactions were limited to yeast cell walls in non-stressed conditions, the passage of polyphenols through yeast envelope and their accumulation in the intracellular space of living cells was shown in phytosterol-deficient medium. Whatever the conditions used (stressed and non-stressed conditions) and for all strains, the presence of polyphenols led to a significant decrease of cell growth (50%), CO2 production rate (60 to 80%) and nitrogen consumption (3 to 4 times less), resulting in increased fermentation lengths. The perturbation of yeast growth and metabolism due to polyphenol compounds was likely mostly linked to their interactions with the yeast plasma membrane. From the mid-stationary phase to the end of the fermentation, an adaptive response was exhibited by yeast, resulting in lower mortality. This work evidenced a strong impact of polyphenols on yeast fermentative capacity and highlighted the importance of a better knowledge of the mechanisms involved to improve the management of fermentations in the context of red winemaking.

Reference Type
Journal Article
Authors
Mekoue Nguela J, Vernhet A, Julien-Ortiz A, Sieczkowski N, Mouret JR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference